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Abstract
A numerical transfer matrix calculation is presented for two fully frustrated
three-state Potts models on the square lattice: the Potts piled-up-domino model
and the Potts zig-zag model. The ground state entropies and phase diagrams
are found. The Potts piled-up-domino model displays a finite-temperature
transition when the frustration effects are maximal, and displays re-entrant
behaviour, in contrast to the Ising model equivalent. The ground-state entropy
per spin is larger than in the Ising equivalent. The Potts zig-zag model displays
the same qualitative behaviour as its Ising counterpart, and the ground-state
entropy per spin is the same in the Potts and Ising cases.

PACS numbers: 0550, 0520, 6460F, 7510H

1. Introduction

Spin models are said to be frustrated when they contain competing interactions which prevent
the simultaneous minimization of all the lattice bonds in the ground state [1]. The system is
additionally described as fully frustrated if each plaquette of the lattice is itself frustrated [2].
The nature of a phase transition depends partly on the symmetry group of the candidate low-
temperature phases. Frustration effects are then of most interest when they lead to infinitely
degenerate or ‘nearly degenerate’ ground states. These will in general satisfy a larger symmetry
group than the individual spins, possibly giving rise to exotic critical phenomena [3]. One such
phenomenon is re-entrance [4]. This occurs when a disordered paramagnetic phase comes to
lie at a lower temperature than an ordered phase; as the temperature is increased there is a
transition from disorder to order. One possible explanation for this phenomenon is the so-
called ‘order by disorder’ mechanism [5].

In this paper we present results for two fully frustrated three-state Potts models: the Potts
piled-up-domino model (from here on referred to simply as the piled-up-domino model) and
the Potts zig-zag model (or more concisely the zig-zag model). These are natural extensions of
the Ising-model equivalents studied previously by André et al [6] and are defined as follows.
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(a)

(b)

Figure 1. The piled-up-domino model (a) and the zig-zag model (b). The interaction energy is J1
along the solid lines and J2 along the dashed lines.

The q-state Potts model is defined as a set of variables {σi} associated with the sites {i} of
a lattice [7]. Each σi takes one of q distinct values. The Hamiltonian of the model is given by

H = − 1
2

∑
i,j

Ji,j δσi ,σj (1)

where the sum runs over all pairs of sites and Ji,j are the interaction strengths between a given
pair of spins. For the models of interest in this paper, the interaction strengths are given by

Ji,j =




0 for non-nearest-neighbour spins

J1 for nearest-neighbour spins along the solid lines

J2 for nearest-neighbour spins along the dashed lines

(2)

as shown in figures 1(a) and (b) for the piled-up-domino and zig-zag models respectively. For
convenience we define α = J2/J1. J1 will be taken as positive throughout. In this paper we
shall concentrate on the q = 3 Potts models.

In the Ising versions of these models, the frustration effects suppress the critical
temperature, which becomes zero when α = −1 [8]. We show that, while this remains
the case for the three-state Potts zig-zag model, the three-state Potts piled-up-domino model
has a finite critical temperature when α = −1 and displays re-entrant behaviour.

This paper is divided as follows: in the next section we present briefly the transfer matrix
method used in our study, and in section 3 we apply this method to the calculation of the residual
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ground-state entropy for the piled-up-domino model. We show that the residual ground-state
entropy for the zig-zag model is exactly related to the equivalent Ising-model case. In section 4
we present the finite-temperature phase diagrams for the two cases and section 5 will be devoted
to discussion.

2. The transfer matrix method

The results presented in this paper are obtained using a (numerical) transfer matrix calculation,
giving the partition function for strips of finite widthL but infinite length, N → ∞. The results
are therefore numerically exact for a given lattice width L.

The partition function for the model may be written in the form

Z =
∑
{σ }

∏
x

V (Cx)H(Cx; Cx+1) (3)

where V (Cx) is the contribution to the Boltzmann weight of a given column spin-state Cx

due to interactions within a column and H(Cx; Cx+1) is the contribution due to interactions
between adjacent columns, and depends on the spin states of the two columns Cx and Cx+1. If
additionally periodic boundary conditions are taken in the x-direction, the partition function
for the system may be written as a trace over a product of transfer matrices:

Z = Tr{T N } (4)

where T = V 1/2HV 1/2 and the sum over spin states is taken care of by the matrix
multiplications. Denoting the eigenvalues of T by λi ,

Z =
∑
i

λN
i . (5)

As N becomes large the partition function is dominated by the largest eigenvalue. The
(dimensionless) free energy per spin, f is given by

f = lim
N→∞

1

NL
log(Z)

= 1

L
log(λ0) (6)

and the correlation length is given by

ξ = log

(
λ0

|λ1|
)

(7)

where λ0 is the largest eigenvalue and λ1 is the second largest eigenvalue (in absolute value) [9].
The transfer matrix T is indexed by Cx and Cx+1 both of which correspond to one of

3L distinct column spin states. The capacity required to store the 32L matrix elements on a
computer soon becomes prohibitive. In order to extend the range of values of L which may be
treated numerically, the transfer matrix T is decomposed into a product of sparse matrices as
follows.

One may view the transfer matrix as an operator which adds an additional column to the
lattice. Each element of the matrix is indexed by the spin configuration on the last column
of the lattice (L spins) and the spin configuration of the column being added. If we define
a dangling bond as the bond which has only one spin attached to it, we see that the transfer
matrix replaces the L existing dangling bonds with L new ones. The entry configurations and
exit configurations are given by the values of the spins attached to these dangling bonds. If
now, instead of adding a whole column at once, one spin is added at a time, there are still L
dangling bonds beforehand and afterwards (see figure 2). This operation may be written as a
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T T T1 2 2 Figure 2. Construction of the transfer matrix by single spin addition.

matrix indexed by the configuration of the L spins connected to a dangling bond before the
addition of the new spin, and the configuration of the L spins connected to a dangling bond
after the spin addition. Since L − 1 spins are common to the input and output configurations,
the matrix elements will be non-zero only if these spins have the same values in the input
and output configurations. The corresponding matrix is thus sparse. In this way T may be
decomposed: T = T1T L−2

2 T3 where the matrices T1, T2, T3 correspond to one-spin additions.
If the boundary conditions and in-column interactions are taken care of when the first and last
spins are added, then the intermediary spin additions may all be performed by the same matrix.
The combination of the Ti being sparse and the small number of distinct matrices required to
build up T vastly reduces the storage requirements and enables calculation for lattice widths
up to L = 12.

An alternative method for writing the transfer matrix involves the Kasteleyn–Fortuin
mapping [10] to map the Potts model to a lattice animal problem [11]. This mapping requires
periodic boundary conditions to enable a sparse-matrix reduction [11]. For q = 3 the transfer
matrices in the two representations require an equivalent amount of storage but in a spin
representation it is easier to implement the different boundary conditions used in this paper.

The eigenvalues used were calculated using the Lanczos method, using the ARPACK
package.

3. Ground-state properties

In this section we calculate the ground-state entropy for the two models. In both models, when
α > 0 the model is ferromagnetic. While they are anisotropic, there is no competition in the
interactions. The system minimizes its energy by choosing the same state for all the spins
giving q distinct ground states [7, 12]. The entropy per spin is zero.

A lattice bond is ‘satisfied’ when the interaction energy along it is minimal, and ‘frustrated’
otherwise. It may be seen that for α < 0 it is no longer possible to simultaneously satisfy all
four bonds of a plaquette. The model is then said to be frustrated. However, if α > −1 there
is no ambiguity, in the ground state, over which bond to frustrate. The frustration does not
change the ground state configuration, and the entropy per spin remains zero.

For α = −1 the energy of a plaquette is minimal regardless of which bond is frustrated as
long as one and only one bond is frustrated. There are an infinite number of frustrated bond
configurations satisfying the ground state condition and the entropy per spin in this case is
finite.

For α < −1 the ground state degeneracy is still infinite. While it is clear that the system
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Table 1. The ground-state entropy for the Potts piled-up-domino model. FBC: free boundary
conditions. PBC: periodic boundary conditions.

α < −1 α < −1 α = −1 α = −1
L FBC PBC FBC PBC

2 0.502 5263 0.502 5263 0.635 098 0.635 0983
4 0.385 4409 0.358 8588 0.471 894 0.433 3004
6 0.352 1346 0.323 8563 0.430 075 0.393 4622
8 0.336 9267 0.311 3484 0.412 780 0.382 5248

10 0.328 266 0.305 7865 0.403 783 0.378 9744
12 0.322 6777 0.302 8948 0.398 421 0.377 6883

∞ 0.299 9 0.297 2 0.381 4 0.376 6

Ising 1
2 log((1 +

√
5)/2) G

π

Exact = 0.240 659 · · · 0.291 6 · · ·

A B

Figure 3. Plaquettes for the construction of the zig-zag model.
Solid lines show interactions of strength J1 and dashed lines
interactions of strength J2. The arrow shows path to prefixed spin
in the case that the marked bond is frustrated.

will satisfy the antiferromagnetic bond in order to minimize the energy, there is still a choice
over which of three ferromagnetic bonds to frustrate. The entropy per spin here is also finite.

3.1. Piled-up-domino model

The ground-state entropy for the piled-up-domino model was calculated using transfer
matrices. In the ground state it is necessary to add two spins at a time in order to ensure
that only one bond per plaquette is frustrated. Since the energy is constant and minimal, the
entropy per spin is simply the number of ground states per spin, leading to

s = 1

L
log(λ0). (8)

The entropy was calculated with the transfer direction parallel to the dashed lines as shown
in figure 1. Both free and periodic boundary conditions were considered. The results are
shown in table 1. It may be seen that the entropy per spin is substantially larger than for the
Ising-piled-up-domino model.

The extrapolations to L → ∞ throughout the paper are done using the Bulirch and Stoer
algorithm [13].

3.2. The zig-zag model

The ground-state entropy per spin for the zig-zag model is the same in the Potts and Ising cases.
This can be illustrated as follows: imagine that, from some suitable boundary configuration
of spins, a ground-state configuration of spins is built up by adding alternately plaquettes of
type A and B, shown in figure 3, in rows, starting from top left and ending bottom right, one
plaquette at a time. The spins marked by a cross are shared with plaquettes already added
to the lattice, and are thus already fixed. In the ground state only one bond per plaquette is
frustrated. Whichever of the bonds is frustrated in a plaquette of type A, the ‘free’ spin is
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connected by a ferromagnetic path to a predetermined spin. At first sight this is not true for
plaquettes of type B, however the frustrated bond is shared between two plaquettes, and it can
be seen that the ‘free’ spin is connected by a ferromagnetic path to a predetermined spin either
directly, or via the neighbouring plaquette (of type A) see figure 3. The entropy per spin in
the ground state is thus determined uniquely by the configurational entropy of the frustrated
bonds, with no additional (local) degeneracy due to the number of Potts states. This was not so
in the piled-up-domino case where it is possible to create free domains of spins. The residual
ground-state entropy per spin is thus the same as reported for the Ising model [6], i.e.

s = 1

4π2

∫ π

0
dθ

∫ π

0
dφ log

[
1 + 4 cos θ cosφ + 4 cos2 θ

]
= 0.1615 · · · for α < −1

s = 1

4π2

∫ π

0
dθ

∫ π

0
dφ log

[
4(cos2 θ + sin2 φ)

]

= G

π
= 0.2916 · · · for α = −1.

The difference between the ground states of the Ising and Potts versions of the zig-zag
models is an overall degeneracy relating to the symmetry of the spin (Z2 and Z3). This was
not the case for the piled-up-domino model, where the entropy per spin for the Potts case was
significantly larger than the for Ising case for both α = −1 and α < −1. This difference
indicates that the difference in symmetry group for the ground states in the two cases is not
simply due to the difference in the symmetry groups of the spins. Based on these results, it is
reasonable to expect that the phase diagram of the Potts zig-zag model should be qualitatively
similar to the Ising case, but that the finite-temperature behaviour of the piled-up-domino
model may well be qualitatively different. This is indeed what will be observed in the next
section.

4. The finite-temperature phase diagrams

In this section we present the phase diagrams for the piled-up-domino and zig-zag models.
The critical lines may be identified using phenomenological renormalization [14]. At a critical
point the correlation lengths for two strip widths, measured as a fraction of the strip width,
must be the same. This reflects the scale invariance of a critical system. In practice a finite
width system is always off-critical; however,

ξL(T
∗)

L
= ξL′(T ∗)

L′ (9)

gives a finite-size estimate of the critical temperature, T ∗, which will tend to the true critical
temperature as the strip widths tend to infinity. Assuming that the system is sufficiently close
to the true critical point, the correlation length behaves (to leading order) as

ξL = A|T ∗ − T c|−ν . (10)

Since it is the finite width of the system which prevents the correlation length from diverging,
at T ∗ we have L ∝ ξL. If these two scaling laws are admitted, then a finite-size estimate of
the correlation length exponent may be calculated from the equation

1

νL,L′
=

log
(

dξL
dT /

dξL′
dT

)
log

(
L
L′

) − 1. (11)
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Figure 4. Phase diagram for the Potts zig-zag model.

Table 2. Critical temperature estimates for the zig-zag model.

L/L′ α = 1 α = 0

4/6 1.002 851 7 0.679 435 201
6/8 0.997 615 939 0.675 820 268
8/10 0.996 228 353 0.674 737 229
10/12 0.995 694 57 0.674 343 044

∞ 0.995 0.674

Exacta 1/ log(1 +
√

3) [15]
= 0.994 973 · · · = 0.673 759 6022 · · ·

a Critical temperature for α = 0 solution of e3/T − 3e2/T − 6e1/T − 1 = 0.

4.1. The zig-zag model

The phase diagram found using phenomenological renormalization for the zig-zag model with
periodic boundary conditions is shown in figure 4. The finite-size effects are very small.
The critical temperature is known exactly for two points on the phase diagram [12, 15]:
α = 1, corresponding to the pure ferromagnetic Potts model on the square lattice, and α = 0,
corresponding to the ferromagnetic Potts model on the hexagonal lattice. Our numerical values
calculated at these two points are extrapolated and compared with the exact values in table 2.

Qualitatively the phase diagram is the same as for the Ising model: there is a phase
transition between a low-temperature ferro-magnetic phase and a high-temperature phase for
α > −1. The critical temperature becomes zero at α = −1 and there is no evidence of a phase
transition for α < −1.

The finite size estimates for the exponent ν are shown in figure 5. For a pure three-state
Potts model (α = 1 corresponding to the square lattice, and α = 0 corresponding to the
hexagonal lattice), the value of ν = 5/6 is known exactly [16]. For α � 0 the estimates
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Figure 5. Finite size estimates for the exponent ν for the Potts zig-zag model.

for ν converge to the exact value. Close to α = −1 the estimates for ν seem to take on a
different value, but the range of values of α over which this variation is observed diminishes
as the system size increases. There is no evidence of a multicritical point in the phase diagram
between α = 1 and −1, and so it would seem reasonable to assume that the whole line up to
α = −1 remains in the same universality class as the ferromagnetic three-state Potts model.

4.2. The piled-up-domino model

The phase diagrams for the piled-up-domino model with periodic and free boundary conditions
found using phenomenological renormalization are shown in figure 6.

The critical temperature is known exactly for α = 1 [12], the pure three-state Potts model
on the square lattice, and at this point the critical temperature coincides trivially with that found
in the zig-zag model. It may also be easily determined for α = 0. When α = 0 the spins on
the dashed curves (see figure 1(a)) may be traced over. The resulting model is a ferromagnetic
Potts model on a square lattice with different interactions in the x and y directions: Jx = J1

and

exp(βJy) = exp(2βJ1) + 2

2 exp(βJ1) + 1
.

The critical temperature is known to satisfy [12]

(exp (βJx) − 1)
(
exp

(
βJy

) − 1
) = 3

which leads to Tc = 1/ log(4), measured in units of J1/k. In table 3 we compare the finite-size
critical-temperature estimates, extrapolated using the Bulirch and Stoer algorithm [13], with
the exact value calculated at α = 0. The agreement is good.

Before trying to interpret the phase diagrams shown in figure 6 we review the main
features of the Ising piled-up-domino model, reported in [6]. The phase diagram, shown in
figure 7, is made up of two transition lines in the Ising model universality class. The transition
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Figure 6. Phase diagram for the Potts piled-up-domino model with: (a) periodic boundary
conditions and (b) free boundary conditions. The disorder lines are shown as curves, and the
phase boundaries as symbols. The numerical uncertainty is smaller than the size of the symbols.

line for α > −1 corresponds to the standard Ising transition between a ferromagnetic low-
temperature phase and a paramagnetic high-temperature phase. For α < −1 the ground state
is highly degenerate. The low-temperature phase is characterized as follows: the spins on the
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Table 3. Critical temperature estimates for the piled-up-domino model. PBC: periodic boundary
conditions. FBC: free boundary conditions. PBC-y: periodic boundary conditions with the transfer
direction perpendicular to the dashed curves (see figure 1).

α = 0 α = −1 α = −1.3

L/L′ PBC FBC PBC PBC-y FBC PBC FBC

2/4 0.764 578 0.623 342 0.482 104 0.428 436 — — 0.081 726
4/6 0.739 625 0.677 582 0.456 832 0.416 958 0.272 384 0.350 795 0.189 215
6/8 0.727 985 0.696 787 0.417 748 0.393 249 0.310 488 0.329 505 0.235 781
8/10 0.724 292 0.705 696 0.395 310 0.381 282 0.328 203 0.315 065 0.253 698
10/12 0.722 934 0.710 524 0.383 267 0.367 335 0.338 479 0.305 799 0.262 133

∞ 0.722 0.722 0.361 0.367 0.379 0.283 0.274

Exact 1/ log(4) = 0.721 358 · · · — — — — —

antiferromagnetic lines order ferromagnetically in the y direction and antiferromagnetically in
the x direction, where x and y directions are taken as in figure 1. The spins on the horizontal
ferromagnetic lines are partially disordered. The transition is between this partially ordered
antiferromagnetic phase and the high-temperature paramagnetic phase. The two transition
lines meet with infinite slope at α = −1, where the critical temperature is zero.

These results contrast with the phase diagrams shown in figure 6 for the three-state Potts
models. The phase diagrams shown are calculated using finite width strips of width L in the
direction perpendicular to the antiferromagnetic lines and infinite in the parallel direction. In
figure 6(a) periodic boundary conditions are taken and in figure 6(b) free boundary conditions
are taken. Periodic boundary conditions reduce the number of possible configurations available
to the system, compared to the free boundary case, making it harder to excite the system, and
tending to lock in the low-temperature phase. This is observed in the phase diagrams where in
the periodic boundary case the critical temperature estimates converge to the thermodynamic
limit from above, whilst for the open boundary case the critical temperature estimates converge
from below (see also table 3). In table 3 we compare the critical-temperature estimates for the
two boundary conditions for various key values of α and we find good agreement between the
boundary conditions.

The two estimated phase diagrams are, however, quite different at first sight, notably
for α less than about −1.3. Before trying to reconcile the differences, let us summarize
the similarities. For α = −1 there exists a finite-temperature phase transition with Tc =
0.37 ± 0.01. In table 4 we show finite-size estimates for the exponent ν calculated using
the two different boundary conditions. The extrapolated value of ν for the open boundary
conditions at α = −1 indicates a transition in the three-state Potts universality class. The
finite-size estimates for α = −1 with periodic boundary conditions are still too far from the
thermodynamic limit to permit good extrapolation.

The point α = −1 with T = 0 corresponds to a special point on the phase diagram, since
it is the point which separates the ferromagnetic ground state (s = 0) from the frustrated highly
degenerate ground state (s finite). It therefore corresponds to a transition point, which one
would expect to be connected to the rest of the phase diagram. The phase diagram with open
boundary conditions clearly shows a re-entrant phase ending in a multiphase point which we
identify with the special point T = 0, α = −1. Whilst the periodic boundary results do show
the beginning of a re-entrant phase, the results are less clear. However, as we have seen, there
is good agreement between the extrapolated critical temperatures right up to α = −1. The
transition lines become progressively more rounded as the system width increases. The failure
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Figure 7. Exact phase diagram for the Ising piled-up-domino model, found by André et al [6]
shown as solid curves along with the finite size estimates calculated from the phenomenological
renormalization group for widths 6 and 8 (◦), 8 and 10 (�), 10 and 12 (♦) and 12 and 14 (�). In
(a) periodic boundary conditions are used, whilst in (b) open boundary conditions are used. The
disorder line is shown as a dashed line and the phase boundaries as solid curves.



5194 D P Foster et al

Table 4. Estimates for the exponent ν for the piled-up-domino model.

Periodic boundary conditions Free boundary conditions

L/L′ α = 1 α = 0 α = −1 α = 1 α = 0 α = −1

2/4 0.807 155 0.727 115 0.457 417 0.897 734 0.770 501 —
4/6 0.827 697 0.754 573 0.505 535 0.891 758 0.836 442 2.049 413
6/8 0.837 053 0.792 602 0.573 436 0.883 714 0.852 665 1.354 167
8/10 0.839 283 0.811 782 0.639 087 0.877 283 0.857 856 1.162 991
10/12 0.840 722 0.821 423 0.697 795 0.872 277 0.859 395 1.075 589

∞ 0.842 0.837 1.139 0.836 0.860 0.872

0 0.2 0.4 0.6 0.8 1
m

0

0.4

0.8

1.2

1.6

p(
m

)

L=6
L=8
L=10
L=12

Figure 8. Probability density for the magnetization for α = −1.3 and T = 0.2.

of the transition lines to reach T = 0 for the finite widths is probably related to a stabilisation of
the low-temperature phase by the periodicity condition. To verify this conjecture, we compare
the exact phase diagram found by André et al [6] with both periodic boundary condition and
open boundary condition calculations, see figure 7. The convergence is excellent in both cases
but, as for the Potts model, the periodic boundary condition results fail reach T = 0 (the
transition lines for widths 12 and 14 reach T = 0.444), whereas the open boundary condition
transition lines do extend right down to T = 0. In the light of these considerations it seems to
us likely that the point T = 0, α = −1 remains a multiphase point in the Potts model, where
the paramagnetic, ferromagnetic and partially ordered phases meet. This view is confronted
by the observation that the residual entropy per site at zero temperature is higher for α = −1
than for either α < −1 or α > −1. This means that the ground state is more disordered at
α = −1 than for α < −1 presumably due the coexistence of the paramagnetic and partially
disordered phases.

In models with competing interactions, as is the case here, one may define disorder lines
which indicate where the nature of the correlation function changes from monotonic (due to
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Figure 9. The set of lines in each graph labelled (1) shows the number of satisfied antiferromagnetic
bonds normalized by the total number of antiferromagnetic bonds, while the set of lines labelled (2)
shows the number of satisfied ferromagnetic bonds per spin. (a) Corresponds to α = −1.3 and (b)
to α = −2 both with periodic boundary conditions.
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the ferromagnetic interactions) to oscillatory (due to the antiferromagnetic interactions) [17].
It is easy to show that the correlation function (in the transfer direction) is related to the first
and second largest eigenvalues in absolute value (the largest being always positive) through

G(x) ∝
(
λ1

λ0

)x

. (12)

If λ1 is positive, then G(x) is monotonically decreasing, but if λ1 is negative then

G(x) = (−1)x
( |λ1|

λ0

)x

and is oscillatorily decreasing. If we define λ+
1 as the largest positive eigenvalue, and λ−

1 as the
largest (in absolute value) negative eigenvalue, then the disorder line is found when λ+

1 = |λ−
1 |.

The disorder lines for various lattice widths are shown in figure 6 as lines. It is common to
find disorder lines associated with re-entrant phases. In this case the disorder lines must enter
the cusp caused by the re-entrant paramagnetic phase; since the disorder line corresponds to a
change in behaviour of the correlation function it may not cross a critical line. The disorder
lines for the two different boundary conditions may be seen to converge to a common line as
the thermodynamic limit is approached. The limiting disorder line is curved, contrary to the
Ising case, see the appendix, were the disorder line is calculated analytically and found to be
a vertical line at α = −1. The two transition lines join in the form of a cusp, with the disorder
line between them (as in the Ising case). The form of the disorder line may then be seen as
confirming the existence of the re-entrant paramagnetic phase.

Phenomenological renormalization indicates two possible phase diagrams depending on
which boundary conditions were taken: either the transition line extends to α → −∞ and the
phase diagram resembles qualitatively a distorted version of the Ising model phase diagram,
or there is a second re-entrance. The true thermodynamic phase diagram may correspond to
one of the two possibilities discussed, or to a combination of the two, or indeed to neither.

In order to shed some light on this issue it is interesting to look at a variety of average
thermodynamic quantities, such as the magnetization, energy, average numbers of each type
of bond that are satisfied, etc. It is possible to calculate with relative ease such local average
quantities in the framework of a transfer matrix calculation.

In order to calculate the magnetisation it is necessary to first calculate the probability
of having configuration Cx in column x. This probability is simply the ratio of the partition
function restricted to having configuration Cx and the unrestricted partition function, which in
terms of transfer matrices may be written

p(Cx) = Tr
{
T x |Cx〉〈Cx |T N−x

}
Tr

{
T N

} . (13)

Writing |Cx〉 in terms of the eigenvectors of T and taking N to infinity and using the fact the
T is a real symmetric matrix leads to

p(Cx) = 〈0|Cx〉2. (14)

The magnetization for the Potts model is defined as

m = 1

q − 1
(q〈nmax〉 − 1) (15)

with nmax the maximum of {ρi}, where ρi are the densities of spins in each of the Potts states.
Defining m(C) as the magnetization for a column state as

m(C) = 1

q − 1

(
q
Nmax(C)

L
− 1

)
(16)
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with Nmax the largest of the numbers of each spin type present in configuration C. The
magnetization is then given as

m =
∑

C
m(C)p(C)

=
∑

C
m(C)〈0|C〉2. (17)

Since 〈0|C〉2 is the probability of finding a column in configuration C, then the probability
of finding a column with magnetization m is given by

P(m) =
∑

C
δ(m(C) − m)〈0|C〉2. (18)

It is important to note that this is not the probability of a magnetization m for the system
as a whole. Since this probability distribution is restricted to a column it gives a finer probe
into the probable column configurations. This is plotted for α = −1.3 and T = 0.2 as a
probability density function in figure 8 by dividing each probability by the interval between
allowed values of the magnetization for a given lattice width. It may be clearly seen that the
probability density is developing two peaks, one at m = 1 and a second at a substantially lower
value ofm. This implies that in the low-temperature phase each column has a high probability of
being ordered ferromagnetically (along the y direction)or of being (partially) disordered. How
these are arranged in the x direction is not easy to calculate in the transfer matrix formalism,
but preliminary Monte Carlo calculations [18] seem to indicate that the system alternates in
the x direction between ferromagnetically ordered and disordered columns. The probability
distribution shown is virtually identical for the two considered boundary conditions and for
α = −1.3 and −2. The peak at m = 1 is lost in the high-temperature phase, clearly indicating
the absence of magnetic order. No evidence of two different frustrated phases could be found
from the distribution of the magnetization probability.

To calculate quantities such as the energy per spin or the densities of satisfied bonds it is
necessary to calculate the probabilities of having a configuration Cx in column x and Cx+1 in
column x + 1 since these quantities are defined in terms of pairs of spins, which may belong
to two adjacent columns. The calculation of the joint probability p(Cx, Cx+1) follows exactly
as above:

p(Cx, Cx+1) = Tr
{
T x |Cx〉〈Cx |T |Cx+1〉〈Cx+1|T N−x−1

}
Tr

{
T N

} (19)

= 〈0|Cx〉〈0|Cx+1〉〈Cx |T |Cx+1〉
λ0

. (20)

Defining nferro(Cx, Cx+1) and nantiferro(Cx, Cx+1) as the densities of satisfied bonds, we may
calculate the average values:

〈nferro〉 =
∑

Cx ,Cx+1

nferro(Cx, Cx+1)p(Cx, Cx+1) (21)

and similarly for 〈nantiferro〉.
These two quantities are plotted in figure 9 for (a) α = −1.3 and (b) α = −2 with

periodic boundary conditions. It may be seen that there is a clear difference of behaviour
between α = −1.3 and −2. In the first case the two densities may be seen to drop away
from their maximal values at the different temperatures (shown approximately by arrows in
figure 9(a)). In the second case this same drop off occurs at the same temperature for the two
different densities. The results for the densities show a high degree of agreement between the
two different boundary conditions. Both show a qualitative difference of behaviour between
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Figure 10. Possible thermodynamic phase diagram for the three-state Potts piled-up-domino model.
The disorder line is shown as a dashed curve, and the dotted curve is a possible extra transition line
between two partially ordered phases (see text) with a possible multicritical point, marked as A on
the phase diagram.

α = −1.3 and −2, and evidence of possible phase transitions for both values of α, indicated by
arrows in figure 9, two for α = −1.3 and one for α = −2. The specific heat does not diverge
with system size for either of these values of α, but the peaks of the specific heat converge to a
temperature consistent with the critical temperature shown in figure 6(a) for α less than about
−1.5 and all α � −1.

We conclude that there is sufficient evidence to conjecture a phase diagram as shown semi-
schematically in figure 10, with a possible second partially ordered phase at low temperature,
(PO II). This additional phase, compared to the piled-up-domino Ising model, is only presented
speculatively; the width of this phase reduces as system size increases (see figure 6) and may
disappear in the thermodynamic limit. If such a phase were to exist then it is likely to terminate
at a multicritical point (A). The presence of such a multicritical point could provide evidence
of such a phase.

5. Conclusions

The main results presented in this paper relate to the Potts piled-up-domino model, where we
have presented behaviour which is remarkably different from the equivalent Ising case, notably
a finite-temperature transition and re-entrant behaviour. It is unusual to see re-entrance in such a
simple model. Models showing re-entrance normally contain competing nearest-neighbour and
next-nearest-neighbour interactions [3] or interaction between different spin types [19]. The
additional entropy available due to the greater number of spin states stabilizes the ferromagnetic
ground state as the temperature is increased (with α = −1), contrary to the naive anticipation
that the extra degrees of freedom will disorder the system more. This may be understood as
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follows: in the Ising case the ground states may be mapped one to one onto dimer coverings of
the lattice, but when the q-state Potts model is considered the mapping is no longer one to one,
and the additional degeneracy is not uniformly distributed. This reweighting must apply to all
the low-lying states, and must serve to stabilise the ferromagnetic phase as the temperature
is increased through an order by disorder mechanism. In the zig-zag case the different dimer
coverings have the same weight in the ground state, as in the Ising case, and we do not observe
an equivalent stabilization of the ferromagnetic ground state.

The exact nature of the phase diagram and the low-temperature phases for α < −1 remain
to be fully determined, and will doubtless require other methods. This will be the object of a
future study.
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Appendix. Disorder line for the Ising piled-up-domino model

The free energy and phase diagram for the Ising piled-up-domino model was solved exactly
by André et al [6], but to the best of our knowledge the disorder line has not been found for
this model.

André et al give the (dimensionless) free energy per spin as

f = log 2 +
1

4π2

∫ π

0

∫ π

0
dqx dqy log)(qx, qy) (A.1)

with

)(qx, qy) = 1
2 [cosh 2βJ cosh 2αβJ + cosh2 2βJ cosh 2(1 + α)βJ

− sinh2 2βJ cos qy − 2 cosh 2βJ sinh 2(1 + α)βJ cos qx
+ sinh 2βJ sinh 2βαJ cos 2qx] (A.2)

from which we deduce the form of the generic correlation function as

G(qx, qy) = 1

)(qx, qy)
(A.3)

leading to

G(x, y) = 1

4π2

∫ π

0

∫ π

0
dqx dqy

exp i(xqx + yqy)

)(qx, qy)
. (A.4)

The modulation ofG(x, y) in the x (y) direction is governed by the maximum ofG(qx, qy),
or the minimum of )(qx, qy), with respect to qx(qy). Since the modulation is anticipated in
the x-direction (see [6]), we seek the turning points of )(qx, qy) with respect to qx :

∂)

∂qx
= 2 cosh 2βJ sinh 2(1 + α)βJ sin qx − 2 sinh 2βJ sinh 2αβJ sin 2qx (A.5)

which becomes zero when qx = 0, π or when

cos qx = cosh 2βJ sinh 2(1 + α)βJ

2 sinh 2βJ sinh 2αβJ
. (A.6)

Checking the second derivative of ) it may be seen that the qx = 0 solution is a minimum
as long as

cosh 2βJ sinh 2(1 + α)βJ > 2 sinh 2βJ sinh 2αβJ (A.7)
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and the qx = π solution is a minimum as long as

cosh 2βJ sinh 2(1 + α)βJ > −2 sinh 2βJ sinh 2αβJ. (A.8)

These two conditions correspond exactly to the boundaries within which the solution (A.6)
exists, which must correspond to a maximum.

In the range of values of α for which the two solutions qx = 0 and π are minima it
remains to determine which corresponds to the absolute minimum. This may be determined
by considering

)(π, qy) − )(0, qy) = 4 cosh 2βJ sinh 2(1 + α)βJ. (A.9)

This changes sign when α = −1. For α > −1 the leading mode of the correlation function
is the qx = 0 mode, while for α < −1 the leading mode is the qx = π mode. This gives the
location of the disorder line as α = −1 for all temperatures.

References

[1] Toulouse G 1977 Commun. Phys. 2 115
[2] Villain J 1985 J. Physique 46 1840
[3] Diep H T (ed) 1994 Magnetic Systems with Competing Interactions (Singapore: World Scientific)
[4] Diep H T and Giacomini H 1994 Magnetic Systems with Competing Interactions (Singapore: World Scientific)
[5] Villain J, Bidaux R, Carton J-P and Conte R 1980 J. Physique 41 1263
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